## A novel HER2/4-1BB bispecific antibody, YH32367 (ABL105) exerts significant anti-tumor effects through tumor-directed T cell activation

Eunjung Lee<sup>1</sup>, Hyejin Chung<sup>2</sup>, Yangsoon Lee<sup>2</sup>, Eun-Jung Lee<sup>1</sup>, Young Bong Park<sup>1</sup>, Youngseok Kim<sup>1</sup>, Ju Young Park<sup>1</sup>, Sujin Ahn<sup>1</sup>, Junhwan Kim<sup>1</sup>, Kyoung Kyu Ahn<sup>1</sup>, Kyeongsu Park<sup>2</sup>, , Wonjun Son<sup>2</sup>, Donghoon Yeom<sup>2</sup>, Jaeho Jung<sup>2</sup>, Jonghwa Won<sup>2</sup>, Se-Woong Oh<sup>1</sup> <sup>1</sup>Yuhan Corporation, Seoul, Republic of Korea , <sup>2</sup>ABL Bio Inc., Gyeonggi-do, Republic of Korea

## Background

### YH32367 (ABL105), Anti-HER2/4-1BB bispecific antibody

| Candidate            | <ul> <li>Tumor-directed HER2/4-1BB bispecific antibody<br/>engineered to amplify tumor-localized activation<br/>while limiting super-agonistic activity of 4-1BB</li> <li>Humanized IgG1 bispecific antibody</li> </ul>                                                                                                    |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Function             | <ul> <li>Induction of T cell activation and survival through 4-1BB stimulation</li> <li>Growth signal blocking via HER2 receptor binding in tumor</li> <li>NK cell-mediated ADCC effect</li> </ul>                                                                                                                         |  |  |  |  |  |
| Indication           | <ul> <li>HER2 positive solid cancers: breast, gastric, biliary, bladder cancer<br/>etc.</li> </ul>                                                                                                                                                                                                                         |  |  |  |  |  |
| Competitiveness      | <ul> <li>Compared to HER2-mAb or ADC, YH32367 is expected to have</li> <li>Long-term clinical efficacy due to tumor-specific immune-memory</li> <li>Significantly lower toxicity compared to HER2-ADC</li> <li>Potential treatment option for patients who have progressed after prior anti-HER2-based regimens</li> </ul> |  |  |  |  |  |
| Development<br>stage | <ul> <li>Preclinical GLP toxicity studies: ongoing</li> <li>Clinical material manufacturing for first-in-human study: ongoing</li> <li>First-in-human study planned in 2022</li> </ul>                                                                                                                                     |  |  |  |  |  |

**Mechanism of action: Tumor-targeted 4-1BB agonism** 



## Methods

- Target binding affinities were measured by SPR assay and cell binding assay.
   4-1BB expressing Jurkat cells and HCC1954 cells were used in cell binding assay
- 4-1BB activity was evaluated by 4-1BB bioassay in HER2 expressing cells and FcγR over-expressing cells. Normalized HER2 expression was calculated based on HER2 expression of SK-BR-3.
- In vitro efficacy on IFN-γ secretion and tumor cell survival was measured in hPBMC and HCC1954 co-culture system.
- In vivo efficacy studies were conducted in HCC1954 bearing hPBMC engrafted mouse model and hHER2/MC38 bearing h4-1BB knock in mouse model. HER2 expression of hHER2/MC38 tumor was evaluated by immunohistochemistry (IHC). MDA-MB-231 tumor tissue (HER2<sup>-</sup> tumor) and HCC1954 tumor tissue (HER2<sup>+</sup> tumor) were used as control of HER2 immunohistochemical stains.
- Tumor infiltrated immune cells were measured by IHC in tumors and livers.
- Number of CD45<sup>+</sup> cells in blood was analyzed using FACS analysis.
- Number of F4/80<sup>+</sup> cells in liver was counted using IHC.
- Benchmark Abs: Strong agonistic anti-4-1BB monoclonal antibody and anti-4-1BB/HER2 targeting bsAb (In house preparation)
- Statistics

All data were presented as the mean ± SEM and analyzed using one-way ANOVA followed by Dunnett's multiple comparison tests in GraphPad Prism<sup>®</sup>.

<sup>\*\*\*</sup>p < 0.001, <sup>\*\*</sup>p < 0.01 and <sup>\*</sup>p < 0.05 compared to Control group (G1).



## Results

### IN VITRO

### YH32367 exhibits potent binding affinities to targets

### Fig. 1. The binding affinities to targets

SPR assa

| ssay |        | K <sub>D</sub> (nM) |               |             |  |  |
|------|--------|---------------------|---------------|-------------|--|--|
|      |        | YH32367 (ABL105)    | Anti-4-1BB Ab | Trastuzumab |  |  |
|      | h4-1BB | 3.36                | 1.78          | N/A         |  |  |
|      | hHER2  | 0.48                | N/A           | 0.58        |  |  |

#### Cell binding assay



# YH32367 leads to 4-1BB activation through HER2 expression level-dependent binding and FcyRI-mediated crosslinking

### Fig. 2. HER2-dependent 4-1BB activation



### Fig. 3. FcyRI-mediated 4-1BB activation



# YH32367 enhances the cytotoxic effect of immune cells via 4-1BB activation in vitro

### Fig. 4. In vitro efficacy on IFN-γ secretion and tumor cell survival



### IN VIVO

# YH32367 exhibits potent anti-tumor effect in humanized mice model

### Fig. 5. In vivo efficacy in HCC1954 bearing hPBMC engrafted mice



### YH32367 enhances immune cell infiltration into tumors

### Fig. 6. Immune cell profile in HCC1954 bearing hPBMC engrafted mice





# YH32367 is designed to minimize undesirable immune response in peripheral blood and liver





### YH32367 exhibits a significant anti-tumor effect to HER2+ tumor in h4-1BB KI mice model

Fig. 8. Significant tumor growth inhibition following single *i.v. treatment* 



### Fig. 9. Remarkable anti-tumor efficacy of YH32367



# YH32367 exhibits prolonged anti-tumor effect via tumor specific memory T cells

### Fig. 10. Prolonged anti-tumor effect in h4-1BB KI mice



# A favorable safety profile of YH32367 demonstrated in repeat-dose cynomolgus monkey toxicology study

- 4-week repeated dose monkey GLP toxicology study in progress
- During the in life phase, no notable changes in body weight/food consumption as well as no mortality

### Table. 1. GLP-Toxicology study design

|                 | Dose level (mg/kg) | No. of animals |   |          |   |
|-----------------|--------------------|----------------|---|----------|---|
| Group           |                    | Toxicity       |   | Recovery |   |
|                 |                    | Μ              | F | M        | F |
| G1 control      | 0                  | 3              | 3 | 2        | 2 |
| G2 Low          | 10                 | 3              | 3 |          |   |
| G3 Intermediate | 30                 | 3              | 3 |          |   |
| G4 high         | 100                | 3              | 3 | 2        | 2 |

## Conclusion

### YH32367 (ABL105) exhibited

- Tumor localized 4-1BB activation depending on crosslinking with HER2 and FcγRI
- Potent in vitro activity achieved by HER2 and 4-1BB binding
- Superior anti-tumor efficacy confirmed in hPBMC engraft and h4-1BB KI model
- Tumor specific memory T cells effect verified through prolonged anti-tumor effect
- Significantly low hepatotoxicity identified due to the conditional 4-1BB activation

abloic